On Mathieu-type series for the unified Gaussian hypergeometric functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial series expansions for confluent and Gaussian hypergeometric functions

Based on the Hadamard product of power series, polynomial series expansions for confluent hypergeometric functions M(a, c; ·) and for Gaussian hypergeometric functions F (a, b; c; ·) are introduced and studied. It turns out that the partial sums provide an interesting alternative for the numerical evaluation of the functions M(a, c; ·) and F (a, b; c; ·), in particular, if the parameters are al...

متن کامل

Gaussian Hypergeometric series and supercongruences

Let p be an odd prime. In 1984, Greene introduced the notion of hypergeometric functions over finite fields. Special values of these functions have been of interest as they are related to the number of Fp points on algebraic varieties and to Fourier coefficients of modular forms. In this paper, we explicitly determine these functions modulo higher powers of p and discuss an application to super...

متن کامل

Values of Gaussian Hypergeometric Series

Let p be prime and let GF (p) be the finite field with p elements. In this note we investigate the arithmetic properties of the Gaussian hypergeometric functions 2F1(x) =2 F1 „ φ, φ | x « and 3F2(x) =3 F2 „ φ, φ, φ , | x « where φ and respectively are the quadratic and trivial characters of GF (p). For all but finitely many rational numbers x = λ, there exist two elliptic curves 2E1(λ) and 3E2(...

متن کامل

Certain Sufficiency Conditions on Gaussian Hypergeometric Functions

The author aims at finding certain conditions on a, b and c such that the normalized Gaussian hypergeometric function zF (a, b; c; z) given by F (a, b; c; z) = ∞ ∑ n=0 (a, n)(b, n) (c, n)(1, n) z, |z| < 1, is in certain subclasses of analytic functions. A particular operator acting on F (a, b; c; z) is also discussed.

متن کامل

New upper bounds for Mathieu–type series

The Mathieu’s series S(r) was considered firstly by É.L. Mathieu in 1890; its alternating variant S̃(r) has been recently introduced by Pogány et al. [12] where various bounds have been established for S, S̃. In this note we obtain new upper bounds over S(r), S̃(r) with the help of Hardy–Hilbert double integral inequality. 2000 Mathematics Subject Classification. Primary: 26D15, 33E20.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis and Discrete Mathematics

سال: 2020

ISSN: 1452-8630,2406-100X

DOI: 10.2298/aadm190525014p